Operational Space Control of Constrained and Underactuated Systems
نویسندگان
چکیده
The operational space formulation (Khatib, 1987), applied to rigid-body manipulators, describes how to decouple task-space and null-space dynamics, and write control equations that correspond only to forces at the end-effector or, alternatively, only to motion within the null-space. We would like to apply this useful theory to modern humanoids and other legged systems, for manipulation or similar tasks, however these systems present additional challenges due to their underactuated floating bases and contact states that can dynamically change. In recent work, Sentis et al. derived controllers for such systems by implementing a task Jacobian projected into a space consistent with the supporting constraints and underactuation (the so called support consistent reduced Jacobian). Here, we take a new approach to derive operational space controllers for constrained underactuated systems, by first considering the operational space dynamics within projected inverse-dynamics (Aghili, 2005), and subsequently resolving underactuation through the addition of dynamically consistent control torques. Doing so results in a simplified control solution compared with previous results, and importantly yields several new insights into the underlying problem of operational space control in constrained environments: 1) Underactuated systems, such as humanoid robots, cannot in general completely decouple task and null-space dynamics. However, 2) there may exist an infinite number of control solutions to realize desired task-space dynamics, and 3) these solutions involve the addition of dynamically consistent null-space motion or constraint forces (or combinations of both). In light of these findings, we present several possible control solutions, with varying optimization criteria, and highlight some of their practical consequences.
منابع مشابه
Time-Invariant State Feedback Control Laws for a Special Form of Underactuated Nonlinear Systems Using Linear State Bisection
Linear state bisection is introduced as a new method to find time-invariant state feedback control laws for a special form of underactuated nonlinear systems. The specialty of the systems considered is that every unactuated state should be coupled with at least two directly actuated states. The basic idea is based on bisecting actuated states and using linear combinations with adjustable parame...
متن کاملNumerical Solution of Optimal Control of Time-varying Singular Systems via Operational Matrices
In this paper, a numerical method for solving the constrained optimal control of time-varying singular systems with quadratic performance index is presented. Presented method is based on Bernste in polynomials. Operational matrices of integration, differentiation and product are introduced and utilized to reduce the optimal control of time-varying singular problems to the solution of algebraic ...
متن کاملThe Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint
In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...
متن کاملThe variational discretizaton of the constrained higher-order Lagrange-Poincaré equations
In this paper we investigate a variational discretization for the class of mechanical systems in presence of symmetries described by the action of a Lie group which reduces the phase space to a (non-trivial) principal bundle. By introducing a discrete connection we are able to obtain the discrete constrained higher-order Lagrange-Poincar\'e equations. These equations describe the dynamics of a ...
متن کاملConstrained Controller Design for Real-time Delay Recovery in Metro Systems
This study is concerned with the real-time delay recovery problem in metro loop lines. Metro is the backbone of public transportation system in large cities. A discrete event model for traffic system of metro loop lines is derived and presented. Two effective automatic controllers, linear quadratic regulator (LQR) and model predictive controller (MPC), are used to recover train delays. A newly-...
متن کامل